Principal graph stability and the jellyfish algorithm
نویسندگان
چکیده
منابع مشابه
Principal graph stability and the jellyfish algorithm
We show that if the principal graph of a subfactor planar algebra of modulus δ > 2 is stable for two depths, then it must end in Afinite tails. This result is analogous to Popa’s theorem on principal graph stability. We use these theorems to show that an n − 1 supertransitive subfactor planar algebra has jellyfish generators at depth n if and only if its principal graph is a spoke graph. This i...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملThe principal ideal subgraph of the annihilating-ideal graph of commutative rings
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
متن کاملHomogeneous Principal Bundles and Stability
Let G/P be a rational homogeneous variety, where P is a parabolic subgroup of a simple and simply connected linear algebraic group G defined over an algebraically closed field of characteristic zero. A homogeneous principal bundle over G/P is semistable (respectively, polystable) if and only if it is equivariantly semistable (respectively, equivariantly polystable). A stable homogeneous princip...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2013
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-013-0941-2